

D.Bonaccini Calia, I.Guidolin, W.Hackenberg, T.Pfrommer, , R.Holzlöner ,S.Lewis,

On LGSF systems:

- 1. The experimental fiber laser PaRla is operating in Paranal since Feb 2013
- 2. The Paranal LGSF is working regularly since. The laser is in the LCR

D.Bonaccini Calia, I.Guidolin, W.Hackenberg, T.Pfrommer, , R.Holzlöner ,S.Lewis,

On 4LGSF systems:

1. We are very very busy with the AOF/4LGSF. We have a review coming to sebd

the first LGSU to Paranal and Commission it

2. The engineered Toptica lasers have been delivered and accepted (4 units)

CfAO Retreat – Nov 2014

Laser Concept

- Seed diode laser @ 1178 nm
- ~1 MHz linewidth
- Sideband generation for D₂b repumping via current modulation

- Narrow-band amplification
- Efficiently suppressed SBS
- > 36 W @ 1178 nm

- Efficient SHG
- > 22 W @ 589 nm
- ► ~5 MHz linewidth
- Diffraction-limited output
- Doubly resonant cavity

- Solid state wavelength meter
- 10 MHz resolution
- Absolute calibration with stabilized HeNe reference laser

- All-fiber design
- Polarization-maintaining setup
- 100 W @ 1120 nm

System Integration

- Centerpiece integration possible
 - Gravity-invariant operation
 - No heat source: Surface temperature within 1.5 K from ambient
 - Vibration-free liquid cooling: 5 l/min
- Suitable for Chile and Hawaii
 - Earthquake proof
 - Suitable materials (ozone-resistant)
- Easy maintenance
 - Line-replaceable units

Electronics Cabinet: main heat sources, < 600 W

Laser head: < 100 W with integrated control electronics

Performance - Reproducibility

Test	Unit	ESO Spec.	PPU	LU1	LU2	LU3	LU4
	Oilit	opec.	110	LOI	LUZ	LUJ	LUT
Beam quality							
wavefront error (rms)	[nm]	< 70	23	16	18	14	23
Polarization							
PER	[dB]	> 20	> 24	> 24	> 23	> 22	> 24
Laser linewidth (measured with 1GHz FPI)							
FWHM	[MHz]	< 250	< 4.5	< 4	< 6	< 5	< 8
Power Consumption (@ BOL)							
overall efficiency	[%]		3.6	3.9	3.8	3.6	3.5

Summary

Laser concept:

- Diode laser tunable, narrow linewidth, fast toggling, easy modulation
- RFA polarization-maintaining, linewidth-conserving, high efficiency
- SHG − efficient, diffraction-limited beam due to resonant cavity
- Repumper integration without harming beam quality

System integration:

- Pump diodes and power supplies (heat sources) are separated from Laser Head
- Laser Head can be directly integrated into launch telescope
- Optional remote pumping scheme
- Ease of use (low maintenance, no daily tune-up, fast warm-up)

D.Bonaccini Calia, I.Guidolin, W.Hackenberg, T.Pfrommer, , R.Holzlöner , S.Lewis,

4LGSF systems (see Montreal SPIE Proceed.)

The engineered Toptica lasers have been delivered and accepted (4 units)

Fully tested, cumulated >2000 hours laser operation overall

Polishing up the SW and interlocks – support from Toptica

Will Commission one LGSU in April-May on UT4

D.Bonaccini Calia, I.Guidolin, W.Hackenberg, T.Pfrommer, , R.Holzlöner ,S.Lewis,

OnR&D activities:

- 1. The experimental Laser guide star unit Wendelstein has been at LZT
- 2014 LZT (8447-45), line-of-sight sodium profile measurement technique
 - 2015: Now preparing for return flux systematic tests at IAC- OT Tenerife
 - 2016-17 field test LGS-AO at Canary reproducing EELT geometry

CfAO Retreat – Nov 2014

line-of-sight sodium density profile – LZT experiment

- Modulate 10% uplink laser amplitude with pattern [19W eff]
- Use an AOM in WLGSU at ~10 MHz
- Repeat the modulation patterns at regular intervals
- Acquire signals with photomultiplier
- Trigger/time-tag counts, cross-correlate data set with pattern

Thanks!

